
D _ R _ A _ F _ T 
ERA J2EE Technology Overview 

 
Version 0.1 (Complete Draft) 

 
February 23, 2001 

 
 

Contract No:   
Task Order No:   

 
 
 

Document ID:   
 

 
Prepared For: 

 
Office of Policy for Extramural Research Administration 

Office of Extramural Research 
National Institutes of Health 

Bethesda, MD 
 

Prepared By: 
 

Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group 
 

Silicon Spirit Consulting Group, Inc. 
1801 Robert Fulton Drive, Reston, VA 20191 
www.siliconspirit.com   Phone: 703-453-6849 

 
Logicon Federal Data/R.O.W.  Sciences 

1700 Research Blvd, Suite 400, Rockville, Maryland 20850-3142. 



D _ R _ A _ F _ T 
Table of Contents 
 
1 Background................................................................................................................ 3 
2 N-Tier Architecture Fundamentals ......................................................................... 6 
3 J2EE Architecture And Programming Environment............................................ 8 

3.1 J2EE Presentation Layer ..................................................................................... 9 
3.2 J2EE Business Services Layer .......................................................................... 10 

3.2.1 Enterprise Beans........................................................................................ 10 
3.2.2 EJB Container ........................................................................................... 11 

3.3 J2EE Data Services Layer ................................................................................. 13 
3.4 Interoperability with External Systems. ............................................................ 13 

3.4.1 XML.......................................................................................................... 13 
3.4.2 RMI and CORBA/IIOP............................................................................. 14 

4 Applying J2EE To ERA Commons ....................................................................... 15 
4.1 Presentation Layer............................................................................................. 15 
4.2 Business Services Layer.................................................................................... 16 
4.3 Data Services Layer .......................................................................................... 16 
4.4 Interoperability with External Systems. ............................................................ 17 

Appendix A—Acronyms/ Abbreviations/Definitions................................................... 18 
 
 
List of Figures 
 
Figure 1.  N-Tier Architecture (Logical View) ................................................................... 6 
Figure 2.  J2EE N-Tier Architecture ................................................................................... 8 
Figure 3.  J2EE Applied to Commons............................................................................... 15 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 3 2/23/01 

1 Background 
One of the primary objectives of the National Institutes of Health (NIH) Electronic 
Research Administration (ERA) initiative is to provide full electronic grants 
administration between biomedical research applicants/institutions and the NIH Institutes 
and Centers.  A key component of this initiative is the NIH/ERA Commons System 
(Commons), whose goal is to provide an internet interface for applicants and institutions 
to participate in an electronic grant administration process.  This process includes a 
coupling with the Federal Commons initiative, which is currently being coordinated by 
Paul Markovitz of NIH's Office of Extramural Research (OER). 
 
Historically, the original Commons effort was initiated around the 1994/1995 timeframe, 
resulting in a current architecture and operational state that has encountered various 
technology-related problems since its onset to the present time. Since late Fiscal Year 
2000, NIH ERA Management (ERA Management) has determined that a new 
architecture is required to support the Commons in the near future and beyond.  Note that 
ERA Management is currently headed by Dr. John-J McGowan, the NIH ERA Project 
Manager, and Jim Cain (OER), the ERA Implementation Manager.   
 
The current architecture of the Commons is based on the limited technology that was the 
only alternative a few years ago.  Since then, the internet has progressed to another level 
of maturity with regard to new, emerging technology and standards.  Many of these 
newer technologies have been embraced by the IT industry today as practical platforms 
upon which to build reliable systems on the internet.  As is the case with both IMPAC II 
and the Commons (i.e., the ERA System), this includes systems that are enterprise-wide 
and mission-critical.  As a result, ERA Management now believes that a new solution for 
the Commons should be implemented.  The high level requirements associated with this 
approach are based on those that are typical of today’s mission-critical, internet 
applications.  In this context, high level requirements pertain to various factors such as 
security, scalability, performance, maintainability, portability, and other similar 
parameters.  Based on these and other related factors,  ERA Management—in 
conjunction with supporting contractors, including Logicon Federal Data/ROW Sciences 
(ROW Sciences)—initiated two parallel, yet independent, analysis activities.  The 
purpose of these two efforts was to evaluate potential technology solution alternatives for 
the Commons.  This evaluation has led to the creation of two separate analysis 
documents, referenced below.  Note that both these efforts were evaluated based on 
similar criteria. 
 
The first activity was performed by RNSolutions, Inc., who created a document, entitled, 
“ERA Commons Application Development Technology Analysis” (include URL here?).  
This document was evaluated and ultimately distributed by NIH to a selected audience in 
early December 2000.  The analysis for this document was performed in the context of 
programming languages that support web development, and included discussions on 
Oracle PL/SQL, ASP, PHP, Perl, and Java.  The final recommendation in this regard 
resulted in a Java implementation utilizing a multi-tiered application architecture.  It also 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 4 2/23/01 

specifically recommends Sun Solaris as the preferred platform for hosting the application 
architecture.   
 
The second analysis activity was performed by Turner Consulting Group (TCG) who 
created a document, entitled “ERA Commons Application Server Analysis” (include 
URL here?).  Note the subtle difference in titles between both documents. As with 
RNSolutions, TCG’s document was distributed for review by NIH in early December 
2000.  TCG’s analysis was performed in the context of current internet-supported 
application server products, including associated programming languages and related 
tools.   TCG’s primary recommendation is WebLogic, which is an industry leading 
application server that supports multi-tiered architectures with Enterprise JavaBeans 
(EJB).  EJB is the widely-adopted server-side component architecture for Java that 
enables rapid development of mission-critical applications that are versatile, reusable, and 
portable across middleware, while protecting IT investment and preventing vendor lock-
in. 
 
One general note of clarification concerning the term Java is in order here.  Java has been 
used to represent various derivations of and associations with the Java language (Java 
applets, Java servlets, Enterprise JavaBeans, Java Server Pages, JavaScript).  To provide 
a more precise description of the technology, this document will use the term Java 2, 
Enterprise Edition (J2EE).  J2EE is the industry term currently used to represent the 
Java-based platform and technologies that support multi-tiered enterprise applications.  
 
As all analysis activity to date has recommended J2EE-based solutions, NIH ERA 
Management has proceeded with investigating the specifics of how such a solution would 
be implemented in the ERA environment.  To support this effort NIH has engaged an 
industry expert, Mr. Ani Dutta of Silicon Spirit Consulting Group, Inc., who has 
successfully implemented J2EE-based internet applications.  Mr. Dutta is currently 
collaborating with ROW Sciences to develop three planning documents, targeted for 
publication release in early March 2001, to provide a roadmap for how the technology 
can be applied to meet desired ERA objectives.   
 
This document, the "ERA J2EE Technology Overview", serves as an overview of the 
recommended architecture.  It explains the concepts and technologies behind a standard 
J2EE-based implementation as well as how these will map to specifications associated 
with the ERA environment and requirements. 
 
In a closely related second document, "ERA J2EE Platform and Tool 
Recommendations," a specific list of platforms (e.g., hardware, operating system, web 
servers, application servers, and other platform considerations) and tools (e.g., design 
tools, interactive development environments, mapping tools, and other related tools) will 
be recommended to implement the desired solution.  Although some specific 
recommendations have already been made in earlier documents (e.g., WebLogic and Sun 
Solaris) these issues and other similar ones will be revisited to ensure they are compliant 
with the requirements of the architecture and the current ERA environment. 
 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 5 2/23/01 

A third related document, the "ERA J2EE Management Plan," will provide a high level 
plan for how the effort will be managed and executed.  Note that a more comprehensive 
Project Management Plan is currently under development in conjunction with the entire 
ERA Project.  The "ERA J2EE Management Plan" will focus specifically on 
management plans and issues relating to the implementation of J2EE technology in the 
ERA environment.  The plan will address general management issues (e.g., organization 
structure, risks and mitigation, staff training) and will provide a phased approach for how 
the Commons systems will be implemented and/or migrated.  In addition, this segment 
will provide an outline of a proposed methodology—in concert with the current 
ERA/IMPAC II System Methodology—that will be used for the ERA implementation.  
This ensuing (i.e., adopted) methodology will describe specific tasks, milestones, level of 
effort, and other resource needs; and will document the full implementation process.  
This methodology will be based on “best practices” as defined in industry-accepted 
standards for J2EE development such as the Unified Modeling Language (UML) and the 
Rational Unified Process (RUP). 

 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 6 2/23/01 

2 N-Tier Architecture Fundamentals 
Since the benefits of N-Tier Architecture are well known and have been discussed 
elsewhere, we will just address the technical fundamentals of the N-Tier Architecture in 
this section. Figure 1, below, illustrates the fundamental pieces on an N-Tier architecture 
regardless of specifics such as types of languages (object oriented or procedural) or 
technology (CORBA, COM, J2EE, CICS).  

Data Services  Layer

Business Services Layer
(Biz Logic)

Presentation Layer (Client)

Database y Flat FilesDatabase X

Biz
Service

1

Biz
Service

2

Biz
Service

n
…

External
Systems

Clients

Services

 
Figure 1.  N-Tier Architecture (Logical View) 
 
An N-tier architecture consists of three primary layers:  Presentation Layer, Business 
Services Layer, and Data Services Layer.  These Layers are described below. 
 
Presentation Layer.  
The Presentation Layer is responsible for displaying the system functionality to the user 
via the user interface. The user interface can be a desktop application, a web browser, a 
wireless phone display, a palmtop display, or any other presentation medium. For the 
purpose of this paper it is assumed that the Presentation Layer is displaying data on a web 
based user interface. 
 
The Presentation Layer contains minimal functionality (code) for displaying on the 
presentation medium. It is unaware of any business logic.  To access any business logic, 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 7 2/23/01 

the Presentation Layer will acquire the services of the Business Services Layer. Thus the 
Presentation Layer is called the client of the Business Services Layer. Specifically, it is a 
very thin client due to it’s limited functionality. 
 
Business Services Layer. 
The Business Services Layer processes all business logic of the system.  This layer is 
typically composed of several business services or subsystems. Each business service 
component provides its clients with very specific services in an anonymous fashion (i.e., 
without knowing or caring who the client is). A business service is only aware of the 
business rules or business logic of the system to be built. If it needs any data to perform 
its job, it is unaware of the source of that data (e.g., flat file, database, email).  It will rely 
upon the Data Services Layer to access any data. 
 
Data Services Layer. 
The Data Services Layer is responsible for accessing data on behalf of the Business 
Services Layer. It is very aware of the format and type of the data but unaware of the 
semantics of the data. The Data Services Layer is composed of different data services 
dependent on the types of data source (e.g., database, flat file) and the vendor of the data 
source (e.g., Oracle, Sybase, Informix). 
 
3-Tier To N-Tier 
It is obvious why this architecture should be called 3-tier. However, if you look closely at 
Figure 1 you will see that unlike classic 3-tier, the business service components in the 
Business Services Layer can act as both a client and a server depending on the service.  
Consider that if business service component bsc1 provides service x, and business service 
bsc2 provides service y, it is very possible that bsc1 acts as a client to bsc2 to receive 
service y and, alternatively, bsc2 acts as a client to bsc1 to receive service x. Since the 
business service components can form a hierarchy within themselves depending on the 
calling sequence, they can form many levels/tiers in this hierarchy, thus forming the N-
Tier architecture. 
 
Interoperability with external systems. 
Expanding on the concept that a business service component is unaware of its client, we 
can state that an external system component can access our business service component 
seamlessly, if that external system component complies to the standard interface of our 
business service component. Conversely, our business service component can act as a 
client to seamlessly access the external system’s component if the interface is a well-
defined standard.   



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 8 2/23/01 

3 J2EE Architecture And Programming Environment 
 
J2EE is a standard architecture specifically oriented to the development and deployment 
of enterprise Web-oriented applications using the Java programming language. 
Independent Software Vendors (ISVs) and enterprises can use the J2EE architecture both 
for the: 
• development and deployment of intranet applications, thus effectively replacing the 

two-tier and traditional 3-tier models, and 
• development of internet applications, effectively replacing the cgi-based approach. 
Figure 2 illustrates the logical view of a J2EE n-tier architecture model. 

Business Services Layer
Application Server (EJB Container)

External Systems
IIOP

Presentation Layer

Web Container

Browser – html

JSP
Engine

Java Servlet
Engine

Session
Bean

Entity
Bean

Entity
Bean

Data Services Layer
Object-To-Relational Mapping Tool

Access Engine (JDBC,ODBC)

Oracle Flat Files

E-mail

 
Figure 2.  J2EE N-Tier Architecture 
 
J2EE architecture is the platform-neutral architecture for the Java application 
environment.  J2EE architecture extends "Write Once, Run AnywhereTM" capability to 
reusable component development.  
 
The "J2EE Platform Specification" (currently version 1.2) defines a set of standard 
component software Application Program Interfaces (APIs) for the Java platform. This 
specification was developed by Sun with a number of leading industry partners and was 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 9 2/23/01 

then refined based on broad general input from developers, customers, and end-users 
during a public review period. 
 
To write J2EE application components, an application programmer needs to obtain a 
J2EE product from a product provider. Product providers are typically operating system, 
database system, application server, or web server vendors who implement the J2EE 
platform according to the "Java 2 Enterprise Edition Platform Specification" (available 
publicly at http://java.sun.com/j2ee/download.html#platformspec).  A J2EE product 
contains the J2EE APIs, J2EE application server, a web server, and deployment tools. In 
short, everything needed to write and assemble application components, and to deploy 
complete J2EE applications.  
 
The following sections will describe the various pieces of the J2EE N-tier architecture.  
Please refer to Figure 2 for the discussion in this section. 
 
3.1 J2EE Presentation Layer 
 
Web Containers and Web Components 
A Web container is a system-level entity that provides life-cycle management and 
runtime support for JSP pages and servlet components.  A web component is either a 
servlet or a JSP page, which can use the services of its container. The following 
paragraphs describe the JSP and servlet technology in detail. 
JavaServer Pages (JSP) technology allows web developers and designers to rapidly 
develop and easily maintain, information-rich, dynamic web pages that leverage existing 
business systems. As part of the Java family, JSP technology enables rapid development 
of web-based applications that are platform independent. JavaServer Pages technology 
separates the user interface from content generation, enabling designers to change the 
overall page layout without altering the underlying dynamic content. 

JavaServer Pages technology uses eXtensible Markup Language (XML)-like tags and 
scriptlets written in the Java programming language to encapsulate the logic that 
generates the content for the page. Additionally, the application logic can reside in 
server-based resources (e.g., Enterprise JavaBeans) that the page accesses with these tags 
and scriptlets. Any and all formatting (HTML or XML) tags are passed directly back to 
the response page. By separating the page logic from its design and display and 
supporting a reusable component-based design, JSP technology makes it faster and easier 
than ever to build web-based applications. 

JavaServer Pages technology is an extension of the Java Servlet technology. Servlets are 
platform-independent, 100% pure Java server-side modules that fit seamlessly into a web 
server framework and can be used to extend the capabilities of a web server with minimal 
overhead, maintenance, and support. Unlike other scripting languages, servlets involve no 
platform-specific consideration or modifications; they are Java application components 
that are downloaded, on demand, to the part of the system that needs them. Together, JSP 
technology and servlets provide an attractive alternative to other types of dynamic web 
scripting/programming that offers platform independence, enhanced performance, 

http://java.sun.com/j2ee/download.html#platformspec


Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 10 2/23/01 

separation of logic from display, ease of administration, extensibility into the enterprise, 
and, most importantly, ease of use. 
For a standard J2EE implementation, the following processing steps illustrate how the 
various components of the presentation layer interact with each other in a typical run time 
scenario: 

1. The web server receives a request from the user browser and transmits it to a Java 
servlet.   The servlet will interpret the request and then invoke an operation on an EJB on 
the Application Server. 

2. Based on the resultant data from step 1, the servlet will put the data in the servlet 
session data structure of the next JSP page to display and pass this to the JSP engine. 

3. The JSP engine will generate the next HTML page based on the JSP pages’ static html 
content and the dynamic data content from the session data structure passed in by the 
servlet. 

4. The JSP engine will pass the HTML page to the web server process. 

5. The web server process will forward the HTML via the HTTP protocol to the user 
browser. 
 
 
3.2 J2EE Business Services Layer 
 
3.2.1 Enterprise Beans  
Enterprise beans are server components written in the Java programming language. They 
contain the business logic for the application. For example, a checkbook client might 
invoke the debit and credit methods of an account enterprise bean.  
 
There are two types of enterprise beans:  session beans and entity beans.  
 
Session Beans 
A session bean represents a client in the J2EE server. A client communicates with the 
J2EE server by invoking the methods that belong to a session bean. For example, an 
online shopping client might invoke the enterOrder method of its session bean to create 
an order. A session bean converses with the client, and can be thought of as an extension 
of the client. Each session bean can have only one client. When the client terminates, its 
corresponding session bean also terminates. Therefore, a session bean is transient, or non-
persistent.  
 
Entity Beans 
An entity bean represents a business object in a persistent storage mechanism such as a 
database. For example, an entity bean could represent a customer, which might be stored 
as a row in the customer table of a relational database. (An entity bean's information does 
not have to be stored in a relational database. It could be stored in an object database, a 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 11 2/23/01 

legacy application, a file, or some other storage mechanism. The type of storage 
mechanism depends on the particular implementation of EJB technology.) 
 
Comparing Session and Entity Beans 
Although both session and entity beans run in an EJB container, they are quite different. 
The following table contrasts session and entity beans:  
 

 Session Bean  Entity Bean  

Purpose Performs a task for a client.  Represents a business entity object that 
exists in persistent storage.  

Shared 
Access  May have one client.  May be shared by multiple clients.  

Persistence 
Not persistent. When the client 
terminates its session bean is no 
longer available.  

Persistent. Even when the client session 
of EJB container terminates, the entity 
state remains in a data source. 

 
The flexibility of the EJB architecture allows you to build applications in a variety of 
ways. Consider the role of session and entity beans in a real life implementation such as 
an online shopping application.  In this application the JSP/Servlet within the Web 
Container would be the client of a shopping session bean.  When the application needs to 
find a product or enter an order, it instructs the servlet to call the appropriate business 
methods in the session bean. The session bean would then be the client of entity beans 
which managed the relevant objects, such as an order, product, or customer. Because 
entity beans are persistent, their state is stored in the database.  

3.2.2 EJB Container  
Enterprise bean instances run within an EJB container (container for short). The 
container is a runtime environment that controls the enterprise beans and provides them 
with important system-level services. Since you don't have to develop these services 
yourself, you are free to concentrate on the business methods in the enterprise beans. The 
container provides the following services to enterprise beans:  

•  Persistence 

•  Transaction Management 

•  Security 

•  Remote-Client Connectivity. 

•  Life-Cycle-Management. 

•  Database Connection Pooling. 

 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 12 2/23/01 

Persistence (CMP and BMP) 
Persistence means that the state of an object needs to be saved to some sort of persistent 
storage (typically a file or a database), allowing the object to be read in and used at some 
later time, instead of being recreated each time. In non J2EE implementations, an object’s 
persistence had to be implemented manually by the programmer, typically by 
implementing SQL-based database calls to save and restore its state. With a J2EE 
implementation, the fields that should be persistent are simply specified, and the 
container then takes the responsibility for saving and restoring these fields. This reduces 
the programming effort by the developer significantly. This feature is called container 
managed persistence (CMP). In some cases, using CMP is not possible. For example, if 
you are integrating J2EE into an existing 2-Tier system where even though the business 
logic is tightly intertwined with data access, you may wish to retain your investment in 
that codebase. In this situation the developer would have to trade off the benefits of the 
container and manually develop code to integrate with the current code (typically a stored 
procedure) within the bean. This feature is called bean managed persistence (BMP). 

Transaction Management 
When a client invokes a method in an enterprise bean, the container intervenes in order to 
manage the transaction. Because the container manages the transaction, code transaction 
boundaries do not have to be coded in the enterprise bean. The code required to control 
distributed transactions can be quite complex. Instead of a programmer writing and 
debugging complex code, the enterprise bean's transactional properties are simply 
declared in the deployment descriptor file. The container itself reads the file and handles 
the enterprise bean's transactions.  
 
Security 
The container permits only authorized clients to invoke an enterprise bean's methods. 
Each client belongs to a particular role, and each role is permitted to invoke certain 
methods. The roles and the methods they may invoke are declared in the enterprise bean's 
deployment descriptor. Because of this declarative approach, code routines that enforce 
security are not needed.  
 
Remote Client Connectivity 
The container manages the low-level communications between clients and enterprise 
beans. After an enterprise bean has been created, a client invokes methods on it as if it 
were in the same virtual machine.  
 
Life Cycle Management 
An enterprise bean passes through several states during its lifetime. The container creates 
the enterprise bean, moves it between a pool of available instances and the active state, 
and, finally, removes it. Although the client calls methods to create and remove an 
enterprise bean, the container performs these tasks behind the scenes.  



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 13 2/23/01 

 
Database Connection Pooling 
A database connection is a costly resource. Obtaining a database connection is time-
consuming and the number of connections may be limited. To alleviate these problems, 
the container manages a pool of database connections. An enterprise bean can quickly 
obtain a connection from the pool. After the bean releases the connection, it may be re-
used by another bean. 
 
3.3 J2EE Data Services Layer 
 
The Enterprise JavaBeans specification does not require an implementation to support a 
particular type of database. Therefore, the databases supported by different J2EE 
implementations may vary.  

The Data Services Layer is primarily supported by the EJB container in conjunction with 
an object to relational mapping tool. Session beans typically will not access data directly. 
Instead, the session bean will call the appropriate set of entity beans to complete a client 
request. The entity beans in turn will access its object attributes. The object attributes will 
be populated with data from the data source via the container at runtime. 
Setting up the data source for the container is a fairly easy task. During development, 
XML based deployment descriptor files are populated with pointers to the data source(s) 
of the data to be accessed. This information includes references to the object relational 
mapping tool as well (in the case where the database is a relational database). Also during 
entity bean development time, the object relational mapping tool is run to generate data 
access (SQL) code to access the database tables for each entity bean. 

During application runtime, when an entity bean is called, the data required for the entity 
bean is loaded by the container in memory based on the access code generated by the 
object relational mapper tool. Again, this type of persistence support by the container is 
called Container Managed Persistence (CMP). 

If for some reason, the container needs to be bypassed (typically while integrating with 
existing systems which were developed using non-EJB technology), the bean developer 
can insert the data access code manually. Again, this mechanism of direct data access by 
the bean is called Bean Managed Persistence (BMP). 
 
3.4 Interoperability with External Systems. 
3.4.1 XML 

XML is becoming a de facto standard for data exchange in the industry.  The Commons 
be using XML as the primary mechanism for exchanging information with external 
systems. XML is a text-based markup language for defining what information is, as 
opposed to how it looks.  

For example, in an XML document you can define the words Zelda Zee to be a customer 
name and ZZ to be a customer ID. This way, the information can be handled according to 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 14 2/23/01 

what it is. In a HyperText Markup Language (HTML) document, you can make Zelda 
Zee and ZZ appear in bold or italics, but you cannot define them to be a customer name 
and customer ID.  

Document Type Definition (DTD) is part of the XML specification. It specifies the kinds 
of tags that can be included in an XML document, and the valid arrangements of those 
tags. A DTD is used to validate XML structures to make sure you create only valid XML 
structures and that XML structures you send or receive are valid.  

Programs to access XML documents use industry standard specifications such as Simple 
API for XML (SAX) or Document Object Model (DOM) APIs.  Typically a utility 
component in the J2EE application will parse data stored in XML format and load it into 
an object format based on the DOM or SAX APIs. Then, the utility would act as a client 
and invoke the business services layer to run validation of the DOM /SAX based XML 
data before populating the data into the corresponding Enterprise Java Beans.  Third party 
tools providing the DOM/SAX APIs may be used to reduce the development interval. 

3.4.2 RMI and CORBA/IIOP 

In terms of implementation, J2EE solutions can only be implemented with the Java 
language.  However, enterprise systems must be able to converse or interoperate with 
other systems (of partners, customers, etc.) which are built with other languages (e.g., 
COBOL, C, C++).  The Common Object Request Broker Architecture (CORBA) was a 
specification developed by the Object Management Group (OMG) before the advent of 
J2EE to address seamless communication between disparate systems. The transport 
mechanism that was used for this purpose was IIOP (Internet Inter Orb Protocol). The 
J2EE specification initially used a java based Remote Method Invocation (RMI) 
mechanism but later combined this with IIOP to achieve the interoperability needed to 
integrate with CORBA based systems. 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 15 2/23/01 

4 Applying J2EE To ERA Commons 
 
In this section we will discuss the application of the J2EE architectural reference model 
to the NIH ERA Commons application.  Note that this a technical approach only at this 
point. We will finalize the Commons architecture and design through application of the 
development methodology as described in the "ERA J2EE Management Plan". 
 
Figure 3, below, shows the standard J2EE n-tier architecture within the Commons 
environment.  We will discuss the Commons specific implementations in each of the 
three layers. 

Data Services Layer

Business Services Layer

Oracle

External Systems:
Federal Commons

IIOP

Import/
Export
Module
(XML
Parser)

XML files
(Grant Applications)

SOAP or FTP

Session
Bean
(CMP)Entity

Bean

Session
Bean
(BMP
using

PL/SQL)

Presentation Layer

Web Container

Browser – html

JSP
Engine

Java Servlet
Engine

OR Mapping
Tool

Access Engine
(JDBC, ODBC)

 
Figure 3.  J2EE Applied to Commons 
 
 
4.1 Presentation Layer 
 
The Commons implementation of this layer will be identical to the J2EE reference model. 
There will be a very thin client implemented by JSP 1.2 pages for display, and a 
controller Java Servlet to process commands invoked by the user on the JSP form.  The 
Servlet will then invoke the Enterprise JavaBeans in the Business Services Layer.   If 
desired, the actual HTML pages (screens) currently used by the Commons can be reused 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 16 2/23/01 

in the J2EE architecture.  However, it may be desirable to take this opportunity to 
redesign certain screens based on user requirements. 
 
In addition to the J2EE architectural standard, several design standards called design 
patterns have emerged in the industry as a standard way of building reusable frameworks.  
Details of the design pattern to be used will be determined in accordance with the 
development methodology.  The Model View Controller (MVC) pattern is currently being 
considered to build a reusable framework for the Presentation Layer to gather data from 
the Business Services Layer. For more information, refer to 
http://www.javaworld.com/jw-12-1999/jw-12-ssj-jspmvc.html for a thorough explanation 
and an example of the MVC. 
 
4.2 Business Services Layer 
 
The Business Services Layer will follow the J2EE 1.2 (EJB 1.1) specification. Some 
vendors are providing implementations for the newest EJB 2.0 specification. We will 
consider those features depending on their maturity level at Commons development time. 
 
Special consideration needs to be given to retain the current investment in the PL/SQL 
based business logic (both in the existing Commons and IMPACII systems). PL/SQL 
based business logic can be easily reused within the Business Services Layer by using 
Bean Managed Persistence (BMP).  This will allow Enterprise Java Beans to directly call 
PL/SQL procedures and packages stored in the Oracle RDBMS.  As new business logic 
is developed, implementation of this in either a CMP (EJB only) or BMP (EJB and 
PL/SQL) approach will be determined as a detailed design decision based on the specific 
business requirements. 
 
One important note on this topic is that the reuse of PL/SQL in this case is focused on 
business logic.  Certain Commons systems (X-Train and CRISP) also use Oracle PL/SQL 
extensions to support the Presentation Layer (e.g., handling HTTP requests and 
generating HTML pages).  This specialized use of PL/SQL cannot be reused in a J2EE 
environment; however, the HTML pages embedded within the PL/SQL code can be 
reused if the same user interfaces are desired. 
 
4.3 Data Services Layer 
 
Wherever possible and practical, the Data Services Layer will be fully separated from the 
Business Services Layer to be compliant with the J2EE standard. In these instances an 
object to relational mapping tool will be used to map the Bean attributes to the underlying 
Oracle database housing the Commons data.  In cases where existing PL/SQL is used, the 
Data Services layer will only consist of the access engine (JDBC or ODBC) that will 
support calls to the Oracle RDBMS from an EJB.  A good survey of object-data 
integration issues can be found online in a two part article entitled “Crossing the Object-
Data Divide” (http://www.sdmagazine.com/articles/2000/0003/0003j/0003j.htm and 
http://www.sdmagazine.com/articles/2000/0004/0004k/0004k.htm). 
 

http://www.javaworld.com/jw-12-1999/jw-12-ssj-jspmvc.html
http://www.sdmagazine.com/articles/2000/0003/0003j/0003j.htm
http://www.sdmagazine.com/articles/2000/0004/0004k/0004k.htm


Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 
 

  
 17 2/23/01 

Another significant data services issue to consider is the physical database architecture of 
the new Commons system.  Currently, the Commons uses a separate physical database 
from IMPAC II with a vastly different physical data model.  Based on a database analysis 
that occurred during 2000, it was determined that the best course of action is to modify 
the Commons data model to more closely mimic the IMPAC II model.  However, it is 
unclear at this point whether or not the two databases should be physically combined. 
 
Physically combining the databases would greatly simplify the solution by removing any 
issues concerning replication or reconciliation between the databases (which has been a 
major problem to date).  However, there are a host of security concerns to be considered 
if the internet-based Commons applications were to directly access the IMPAC II 
enterprise database.  The advanced security capabilities of the J2EE architecture can be 
used to help alleviate some of these concerns, but any decision to physically merge the 
databases will need to be made based on a careful consideration of all the technical and 
business issues during the full design process. 
  
 
4.4 Interoperability with External Systems. 
 
Any external systems (e.g., Federal Commons) can converse with Commons via the 
following mechanisms. 
 
API Based.  An Application Programming Interface (API) mechanism will require 
programs from each system to communicate with each other via a standard application 
level protocol. The logical choice here is the IIOP protocol. Using this mechanism we 
will be able to seamlessly integrate with other systems using different languages and 
operating systems as long as they can converse with Commons in IIOP. 
 
File Based.  Some of the Commons clients (grantee organizations) use their own tools to 
generate research grant applications that are well embedded in their business workflow. 
Rather than changing the way the clients do business, the Commons can simply ask them 
to transmit the application files to it in an open standard format. The logical choice here 
is XML, which can be processed by a J2EE application and allows the flexibility needed 
to define the semantics of the data.  Figure 3 shows the link from the Federal Commons 
to the ERA Commons. The transport of the XML files can be done via FTP or via a more 
advanced protocol specifically targeted for XML called Simple Object Based Protocol 
(SOAP). 
 
The Import/Export module can read the XML based grantee data into an XML based 
Domain Object Model (DOM).  Next, the Import/Export model can invoke the services 
of the Business Services Layer to run validation and business rules checking before 
populating the data into the Commons data source. 
 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 

 

  
Appendix A—Acronyms/ Abbreviations/Definitions A-18 2/23/01 

Appendix A—Acronyms/ Abbreviations/Definitions 
API Application Program Interface 

BMP Bean-Managed Persistence 

CMP Container-Managed Persistence 

Commons NIH/ERA Commons System 

CORBA Common Object Request Broker Architecture 

DOM Document Object Model 

DTD Document Type Definition 

EJBTM Enterprise Java Beans.  A component architecture for the 
development and deployment of object-oriented, distributed, 
enterprise-level applications. Applications written using the 
Enterprise JavaBeans architecture are scalable, transactional, and 
secure. 

EJB Container A container that implements the EJB component contract of the J2EE 
architecture. This contract specifies a runtime environment for 
enterprise beans that includes security, concurrency, life cycle 
management, transaction, deployment, naming, and other services. An 
EJB container is provided by an EJB or J2EE server. 

Enterprise Bean A component that implements a business task or business entity and 
resides in an EJB container; either an entity bean or a session bean 

Entity Bean An enterprise bean that represents persistent data maintained in a 
database. An entity bean can manage its own persistence or it can 
delegate this function to its container. 

ERA Electronic Research Administration 

HTML Hypertext Markup Language.  A markup language for hypertext 
documents on the Internet. HTML enables the embedding of images, 
sounds, video streams, form fields, references to other objects with 
URLs and basic text formatting. 

IIOP Internet Inter-ORB Protocol.  A protocol used for communication 
between CORBA object request brokers. 

IMPAC II Information for Management, Planning, Analysis, and Control 
system, II 

ISV Independent Software Vendor 

J2EETM Java 2, Enterprise Edition 

JDBCTM An API for database-independent connectivity between the J2EE 
platform and a wide range of data sources 

JMS Java Message Service 



Logicon Federal Data/ROW Sciences and Silicon Spirit Consulting Group ERA J2EE Technology Overview 

 

  
Appendix A—Acronyms/ Abbreviations/Definitions A-19 2/23/01 

JSP JavaServer Pages.  An extensible Web technology that uses template 
data, custom elements, scripting languages, and server-side Java 
objects to return dynamic content to a client.  Typically the template 
data is HTML or XML elements, and in many cases the client is a 
Web browser. 

MVC Model View Controller 

NIH National Institutes of Health 

OER Office of Extramural Research 

OMG Object Management Group 

RDBMS Relational Database Management System 

RMI Remote Method Invocation.  A technology that allows an object 
running in one Java virtual machine to invoke methods on an object 
running in a different Java virtual machine. 

RUP Rational Unified Process 

SAX Simple API for XML.  An event-driven, serial-access mechanism for 
accessing XML documents. 

Servlet A Java program that extends the functionality of a Web server, 
generating dynamic content and interacting with Web clients using a 
request-response paradigm 

Session Bean An enterprise bean that is created by a client and that usually exists 
only for the duration of a single client-server session. A session bean 
performs operations, such as calculations or accessing a database, for 
the client. 

SQL Structured Query Language 

TCG Turner Consulting Group 

UML Unified Modeling Language 

Web Component A component that provides services in response to requests; either a 
servlet or a JSP page 

Web Container A container that implements the Web component contract of the J2EE 
architecture. This contract specifies a runtime environment for Web 
components that includes security, concurrency, life cycle 
management, transaction, deployment, and other services. A Web 
container provides the same services as a JSP container and a 
federated view of the J2EE platform APIs. A Web container is 
provided by a Web or J2EE server. 

XML eXtensible Markup Language.  A markup language that allows you to 
define the tags (markup) needed to identify the data and text in XML 
documents. J2EE deployment descriptors are expressed in XML. 

 


	Background
	N-Tier Architecture Fundamentals
	J2EE Architecture And Programming Environment
	J2EE Presentation Layer
	
	Web Containers and Web Components


	J2EE Business Services Layer
	Enterprise Beans
	Session Beans
	Entity Beans
	Comparing Session and Entity Beans

	EJB Container
	Persistence (CMP and BMP)
	Transaction Management
	Security
	Remote Client Connectivity
	Life Cycle Management
	Database Connection Pooling


	J2EE Data Services Layer
	Interoperability with External Systems.
	XML
	RMI and CORBA/IIOP


	Applying J2EE To ERA Commons
	Presentation Layer
	Business Services Layer
	Data Services Layer
	Interoperability with External Systems.

	Appendix A—Acronyms/ Abbreviations/Definitions

